

# Automatic Cryptanalysis of Block Ciphers with CP

## A case study: related key differential cryptanalysis

David Gerault

LIMOS, University Clermont Auvergne

This presentation is inspired by 4 papers written with Pascal Lafourcade, Marine Minier, Christine Solnon, Siwei Sun, Qianqian Yang, Yosuke Todo, Kexin Qiao, Lei Hu

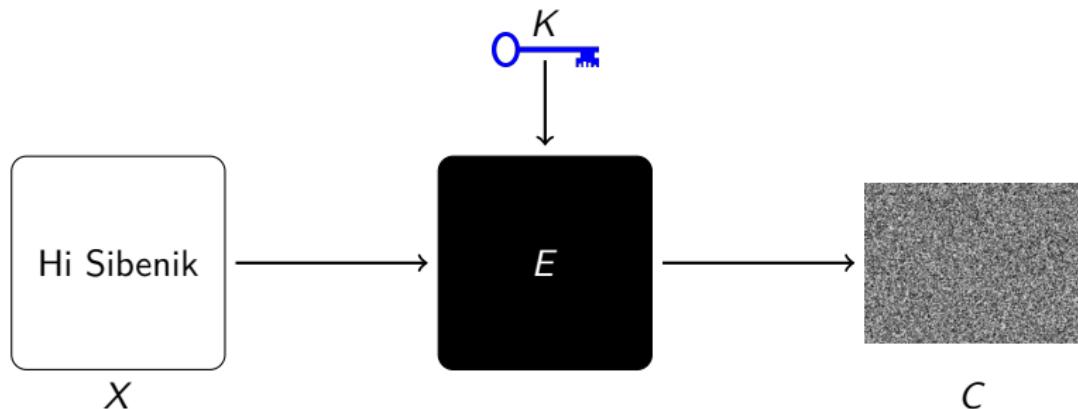
Summer school on Real World Crypto



UNION EUROPÉENNE  
Fonds Européen de Développement Régional



# Block Ciphers

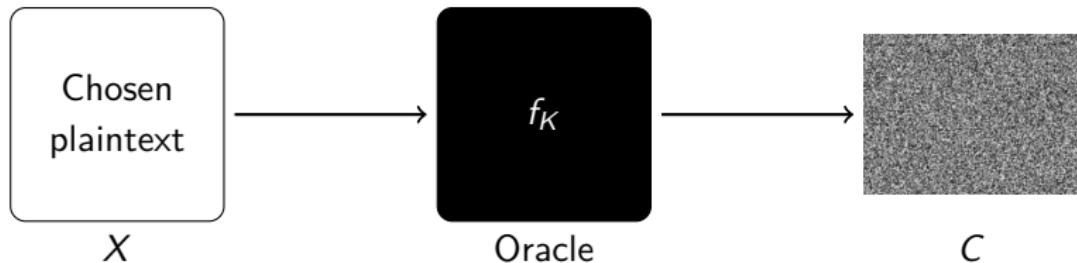


**Keyed permutation**  $E: \{0,1\}^{\mathcal{K}} \times \{0,1\}^{\mathcal{P}} \rightarrow \{0,1\}^{\mathcal{P}}$ . **Generally simple function iterated  $n$  times.**

## Expected Property

Indistinguishable from a random permutation if  $K$  is unknown

# Attacking a block cipher

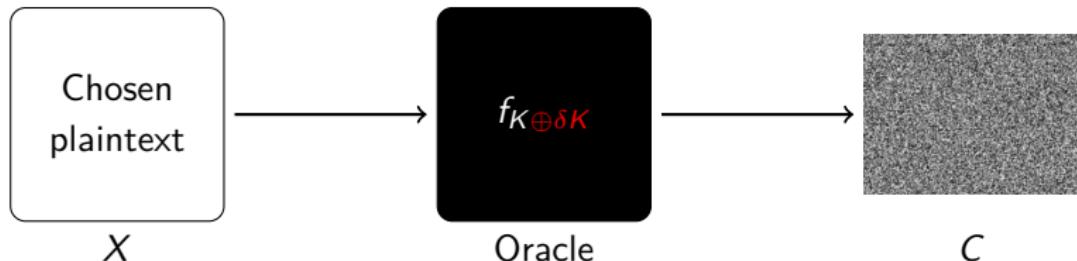


$f \stackrel{?}{=} E$  or random permutation  $\pi$ ?

Distinguishing from  $\pi \equiv$  recovering  $K$

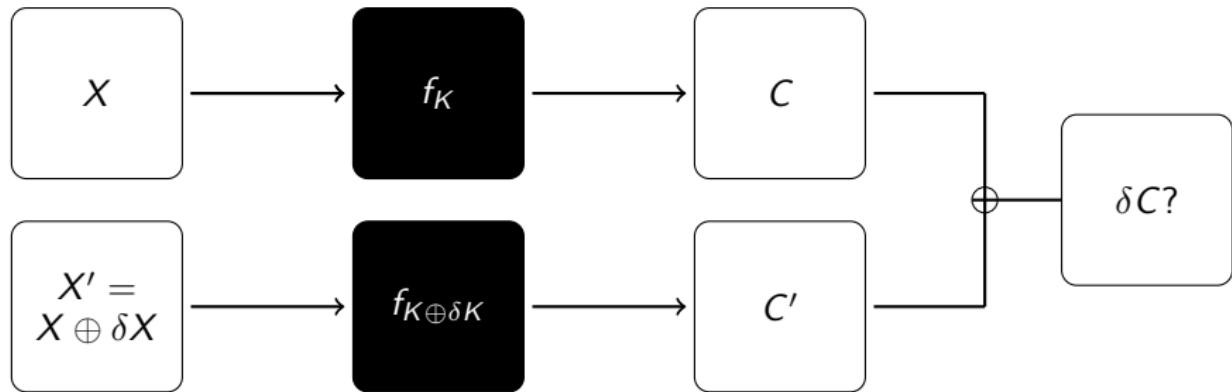
The attacker can encrypt messages of his choice and tries to recover the hidden key  $K$ .

# Related Key Model



- The attacker chooses  $\delta K$  (but  $K$  remains hidden)
- Allowed by certain protocol/real life applications
- A block cipher should be secure in the related key model
- **The best published attacks against AES are related key**

# Related Key Attack

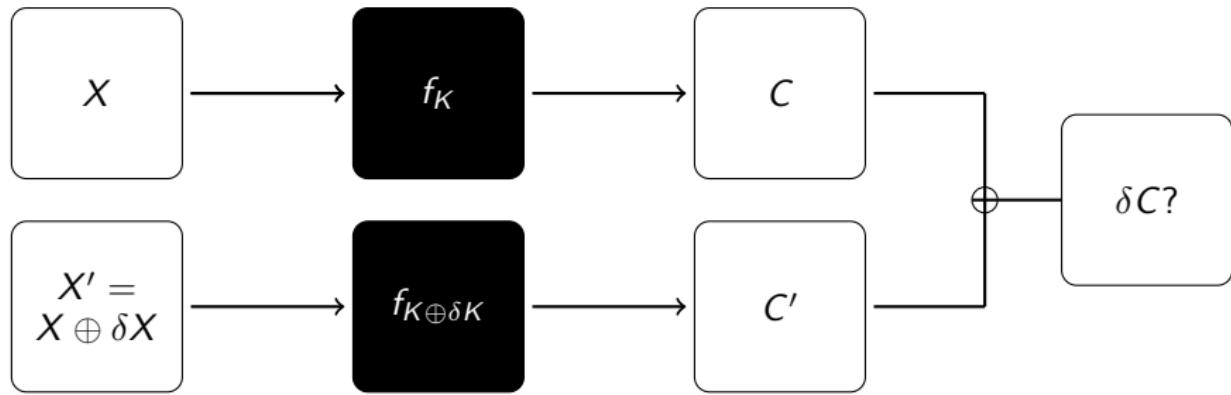


**Distribution of  $\delta C$  for chosen  $\delta X, \delta K$  and random  $X$  and  $K$ ...**

**If  $f = \pi$  ?**

**If  $f = E$  ?**

# Related Key Attack



**Distribution of  $\delta C$  for chosen  $\delta X, \delta K$  and random  $X$  and  $K$ ...**

**If  $f = \pi$  ? Uniform**

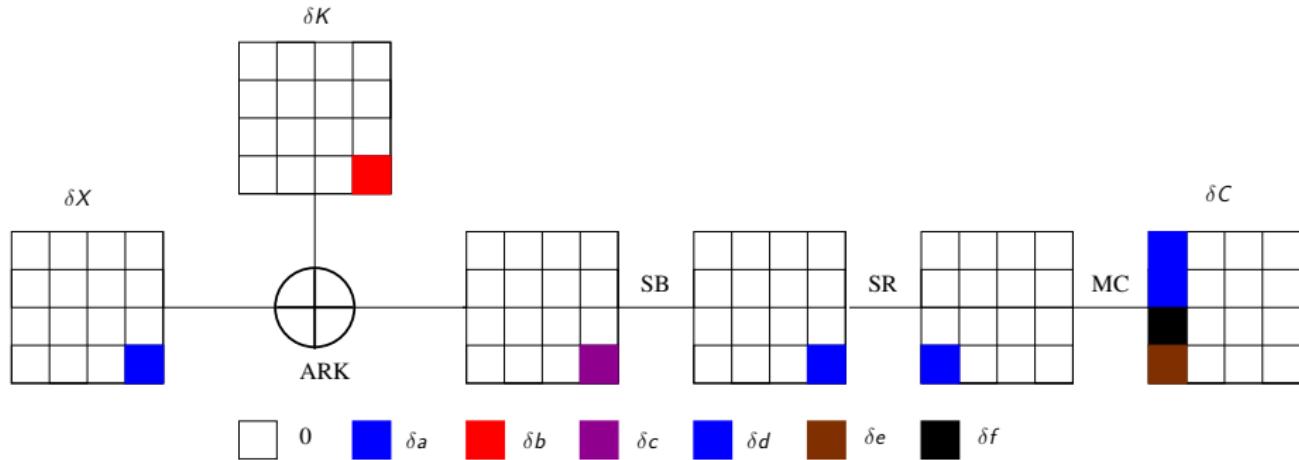
**If  $f = E$  ? Not uniform!**

## Distinguishing attack

The attacker requires many encryptions with input difference  $\delta X, \delta K$  and observes whether there is a bias in the distribution of  $\delta C$

# Differential characteristics

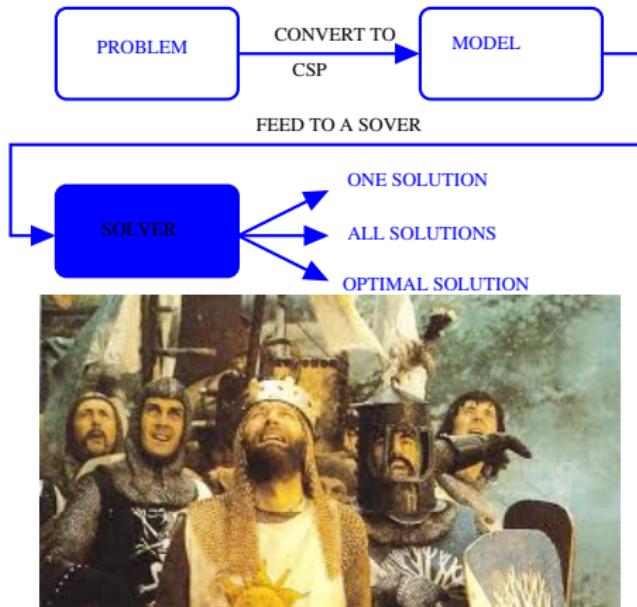
**The higher the bias  $Pr[(\delta X, \delta K) \rightarrow \delta C]$ , the better the attack!**



Differential characteristics (i.e. propagation patterns  $(\delta X, \delta K) \rightarrow \delta C$ ) with optimal probability are needed, **but difficult to find!**

- Fix  $\delta X, \delta K$
- Apply known propagation rules to obtain the most likely  $\delta C$

# We did it! With CP



## Holy Grail

“Constraint programming represents one of the closest approaches computer science has yet made to the holy grail of programming: the user states the problem, the computer solves it.” (E. Freuder)

# CSP

## Variables

Define **variables** on given **domains**

- $[23..42]$   $x$
- **bool**  $y$
- array  $[1..N,1..M]$  of floats  $\delta \dots$

## Constraints

Define relations between these variables as constraints

- $x + y < 5$
- $\text{sum}(\text{AllVariables}) = 10$
- Table: list of allowed tuples  $(a, b, c) \in \{(2, 3, 4), (1, 7, 2)\}$

## Objective function

(optional) Define an **objective function** to optimize

- $\text{Maximize}(\text{Sum}(\delta))$

# Why another automatic tool?

Other automatic tools exist

- SAT
- Mixed Integer Linear Programming (MILP)
- ...

**Question: Why yet another one?**

# Why another automatic tool?

Other automatic tools exist

- SAT Boolean variables
- Mixed Integer Linear Programming (MILP) Linear inequalities
- ...

**Question: Why yet another one?**  
**Response: Generalization!**

## CP

- No limitations on variables nor constraints
- Uses algorithms from the other methods
- There exist tools translating from CP to the others

# Related Work & Contributions: AES

**Standard since 2000**

## Problem

Finding optimal RK differential characteristics on AES-128, AES-192 and AES-256

### Previous work

- Biryukov et al., 2010 : Branch & Bound
  - Several hours (AES-128), several weeks (AES-192)
- Fouque et al., 2013 : Graph traversal
  - 30 minutes, 60 Gb memory, 12 cores (AES-128)

# Related Work & Contributions: AES

**Standard since 2000**

## Problem

Finding optimal RK differential characteristics on AES-128, AES-192 and AES-256

### Previous work

- Biryukov et al., 2010 : Branch & Bound  
→ Several hours (AES-128), several weeks (AES-192)
- Fouque et al., 2013 : Graph traversal  
→ 30 minutes, 60 Gb memory, 12 cores (AES-128)

### Our results

- 25 minutes (AES-128), 24 hours (AES-192), 30 minutes (AES-256)
- New (better) differential characteristics on all versions
- Disproved incorrect one found in previous work

## Lightweight block cipher, 2015

### Problem

Finding optimal RK differential characteristics on Midori-64 and Midori-128

### Previous work

- Midori-64: Dong, 2016 : Custom algorithm  
→ 14 rounds (out of 16),  $2^{116}$  operations
- Midori-128: Not done

# Related Work & Contributions: Midori

## Lightweight block cipher, 2015

### Problem

Finding optimal RK differential characteristics on Midori-64 and Midori-128

### Previous work

- Midori-64: Dong, 2016 : Custom algorithm  
→ 14 rounds (out of 16),  $2^{116}$  operations
- Midori-128: Not done

### Our results (Indocrypt 2016)

- Few hours
- Full round for both versions
- Practical attacks:
  - Midori-64:  $2^{35}$
  - Midori-128:  $2^{43}$

## Problem

Searching for integral, zero-correlation linear, and impossible differential distinguisher on various block ciphers

## Results

- PRESENT, HIGHT, SKINNY
- Reproduced results from the litterature
- New distinguisher on SKINNY

# Conclusion and future challenges

- CP is readable and easy to use
- It is less error prone than custom code
- It performs better than other approaches
- It generalizes MILP and SAT
- **Use CP!**



**Thank you for your attention**

# Other ways to improve a CP model

- **Variable ordering**: Starting with the most constrained one
- **Value choice**: If you want to minimize a sum, affecting variables to 0 first is a good idea
- **BlackBox heuristics**: domain over weighted degree, etc...
- **Restarts**: Reseed the BlackBox strategy after some time
- **Other methods**: The power of **Minizinc**
- **Parallel solving**: Not trivial but can help

## 2 steps solving

### Step 1: boolean abstraction    Step 2: actual byte values

$$\Delta = 0$$

$$\delta = 0$$

$$\Delta = 1$$

$$\delta \neq 0$$

Find candidate solutions

Check their consistency

### Step 1

Step1( $n$ ) gives an output  $\mathcal{O} = (\Delta X, \Delta K, \Delta C)$  and the corresponding difference propagation path, such that the number of Sboxes is minimal.

### Step 2

Step2( $\mathcal{O}$ ) returns a probability and the difference values along the path if  $\mathcal{O}$  is consistent, 0 otherwise.

# Modelling properly

## Straightforward modelling

With a naive approach, more than 90 millions *inconsistent* step 1 solutions found for 4 rounds of AES-128 with 11 active SBoxes

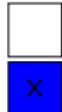
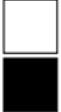


## More elaborate modelling

With a more subtle approach, 0 inconsistent solution

# Example: XOR Constraint

(white = 0, colored  $\neq 0$ )

| Byte values                                                                      | Boolean abstraction                                                               |                                                                                   |                                                                                   |                                                                                   |                                                                                     |
|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| $\delta_A$                                                                       | $\delta_B$                                                                        | $\delta_C$                                                                        | $\Delta_A$                                                                        | $\Delta_B$                                                                        | $\Delta_C$                                                                          |
|  |  |  |  |  |  |
| $\oplus$                                                                         | $\oplus$                                                                          | $=$                                                                               | $\oplus$                                                                          | $\oplus$                                                                          | $=$                                                                                 |
| $\oplus$                                                                         | $\times$                                                                          | $=$                                                                               | $\oplus$                                                                          | $\oplus$                                                                          | $=$                                                                                 |

## Inferring equalities

XORs introduce a lot of branching, but storing information about equality or difference during step 1 helps filtering a lot!

# Example: XOR Constraint

(white = 0, colored  $\neq 0$ )

| Byte values |            |            | Boolean abstraction |            |            |
|-------------|------------|------------|---------------------|------------|------------|
| $\delta_A$  | $\delta_B$ | $\delta_C$ | $\Delta_A$          | $\Delta_B$ | $\Delta_C$ |
|             |            |            |                     |            |            |
|             |            |            |                     |            |            |
|             |            |            |                     |            |            |
|             |            |            |                     |            |            |

| $\Delta_A$ | $\Delta_B$ | $\Delta_C$ |
|------------|------------|------------|
| 0          | 0          | 0          |
| 0          | 1          | 1          |
| 1          | 0          | 1          |
| 1          | 1          | ?          |

## Inferring equalities

XORs introduce a lot of branching, but storing information about equality or difference during step 1 helps filtering a lot!

# With which software

## Specific solver: Highly customizable

Fine-grained tuning: table constraint heuristics, custom constraints etc...

- Choco (Java)
- Gecode (C++)
- Sunny-CP (portfolio)
- Chuffed (Uses SAT techniques)
- and many more...

## MiniZinc: More generic

- CP language, compiled to FlatZinc
- Read by many solvers, including SAT and MILP solvers
- MiniZinc competition

## More details

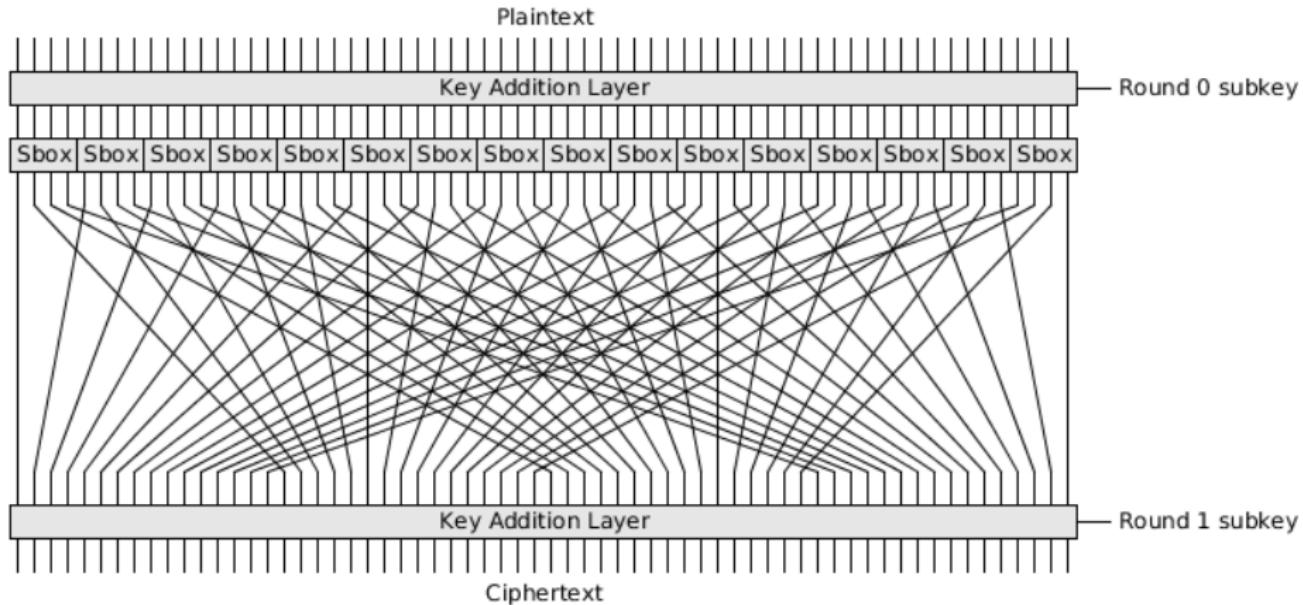
### Choco: General structure

- **Solver:** Solver s = new Solver("Example solver");
- **Variables:** IntVar X= VF.bounded(0, 5, s);
- **Constraints:** s.post(ICF.arithm(X, "!=" , 3));
- **Heuristics:** s.set(ISF.domOverWDeg(allvars, someSeed));
- **Solve:** s.findSolution();

### MiniZinc: General structure

- **Variables:** var 0..5: X;
- **Constraints:** constraint X=5;
- **Heuristics and solve:** solve:: int\_search(allVars, dom\_w\_deg, indomain\_min, complete) satisfy;

# Case study: PRESENT(Bogdanov, 2007)



## Problem

Search for optimal differential characteristics, *i.e* difference propagation patterns with the highest possible probability.